ColdTOFU.Physics package

Submodules

ColdTOFU.Physics.allenDeviation module

class ColdTOFU.Physics.allenDeviation.TSeries(dataPath, channel, f0, Amplitude=None, offset=None)[source]

Bases: object

allenDev(m)[source]
allenVar(m)[source]
fracFreq()[source]
oAllenDev(m)[source]
oAllenVar(m)[source]
timeDiff()[source]

ColdTOFU.Physics.basisMatrices module

class ColdTOFU.Physics.basisMatrices.GellMannBasis[source]

Bases: object

compose(decomposition)[source]
decompose(A)[source]
matrices()[source]
structureConstant(i, j, k)[source]
structureConstants()[source]
class ColdTOFU.Physics.basisMatrices.PauliBasis[source]

Bases: object

A class to represent Pauli’s spin basis.

decompose(A)[source]

Decomposes given non-singular \(2\times 2\) matrix in the Pauli basis.

Parameters

A\(2\times 2\) matrix to be decomposed.

Returns

list of 4 components.

matrices()[source]
Returns

a list of 4 \(2\times 2\) matrices corresponding to \(I_2, \sigma_x, \sigma_y, \sigma_z\)

ColdTOFU.Physics.beams module

class ColdTOFU.Physics.beams.GaussianBeam(wLen, w0, n=1)[source]

Bases: object

R(z)[source]

Radius of curvature of the wavefront at z

complexBeamParameter(z)[source]

complex beam parameter q

field(x, y, z)[source]

Complex field value at (x, y, z)

gouyPhase(z)[source]

Gouy phase at z

intensity(x, y, z)[source]

Intensity at (x, y, z)

w(z)[source]

Waist of the beam at z

ColdTOFU.Physics.createAndDestroy module

ColdTOFU.Physics.createAndDestroy.a(N=5)[source]

Matrix representation of bosonic destruction operator.

Parameters
  • n – destroy boson at n in an N state Fock space

  • N – dimensions of the Fock space, default 5

Returns

a sparse matrix representation of a of shape (N, N) in Fock basis, {\(|n_1, n_2, n_3, ..., N\rangle\)}.

ColdTOFU.Physics.createAndDestroy.a_dag(N=5)[source]

Matrix representation of bosonic creation operator.

Parameters
  • n – create a boson at n in an N state Fock space

  • N – dimensions of the Fock space, default 5

Returns

a sparse matrix representation of a of shape (N, N) in Fock basis, {\(|n_1, n_2, n_3, ..., N\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis module

ColdTOFU.Physics.spinInDickeBasis.S_m(s)[source]

Matrix representation of ladder lowering operator for spin, in general, angular momentum.

Parameters

s – spin quantum number.

Returns

a sparse matrix representation of \(S^-\) of shape (2s+1, 2s+1) in Dicke basis, {\(|s, m_s\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis.S_p(s)[source]

Matrix representation of ladder raising operator for spin, in general, angular momentum.

Parameters

s – spin quantum number.

Returns

a sparse matrix representation of \(S^+\) of shape (2s+1, 2s+1) in Dicke basis, {\(|s, m_s\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis.S_x(s)[source]

Matrix representation of x component of the operator for spin, in general, angular momentum.

Parameters

s – spin quantum number.

Returns

a sparse matrix representation of \(S_x\) of shape (2s+1, 2s+1) in Dicke basis, {\(|s, m_s\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis.S_y(s)[source]

Matrix representation of y component of the operator for spin, in general, angular momentum.

Parameters

s – spin quantum number.

Returns

a sparse matrix representation of \(S_y\) of shape (2s+1, 2s+1) in Dicke basis, {\(|s, m_s\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis.S_z(s)[source]

Matrix representation of z component of the operator for spin, in general, angular momentum.

Parameters

s – spin quantum number.

Returns

a sparse matrix representation of \(S_z\) of shape (2s+1, 2s+1) in Dicke basis, {\(|s, m_s\rangle\)}.

ColdTOFU.Physics.spinInDickeBasis.Spin(s)[source]

Matrix representation of quantum mechanical spin, in general, angular momentum, s.

Parameters

s – int or half int, the spin quantum number.

Returns

a tuple of sparse matrices corresponding to \(S_x, S_y, S_z\)

ColdTOFU.Physics.spinInDickeBasis.SpinAngularMomenta(I, L, S)[source]

Returns angular momenta operators of a state given I, L, S in the tensor product basis.

Parameters
  • I – nuclear spin quantum number of the atomic state

  • L – orbital angular momentum quantum number

  • S – spin quantum number of the state

Returns

a tuple of angular momenta, \(((I_x, I_y, I_z), (L_x, L_y, L_z), (S_x, S_y, S_z))\) (each a tuple of components of \(\textbf{I}\otimes\textbf{L}\otimes\textbf{S}\) as sparse matrices) in tensor product space.

Module contents