$^3P_J$ state of $^{87}Sr$ intercombination line

Hamiltonian

Full Hamiltonian including fine structure, hyperfine structure and Zeeman shift reads

$$ H = A_{hfs} \boldsymbol{I}.\boldsymbol{J} + B_{fs} \boldsymbol{L}.\boldsymbol{S} + Q \frac{3\boldsymbol{I}.\boldsymbol{J}(2\boldsymbol{I}.\boldsymbol{J}+1)-2IJ(I+1)(J+1)}{4IJ(2I-1)(2J-1)} + (g_I I_z + g_l L_z + g_s S_z)\mu_B B_{bias}$$

For $^{87}Sr$ inter-combination line, the constants $A_{hfs}$, $B_{fs}$ and $Q$ are $-260.084$ MHz, $5.57 \times 10^6$ MHz and $-35.685$ MHz, respectively. See the following reference for more details:

[1] Martin M. Boyd, Tanya Zelevinsky, Andrew D. Ludlow, Sebastian Blatt, Thomas Zanon-Willette, Seth M. Foreman, and Jun Ye. Nuclear spin effects in optical lattice clocks. Phys. Rev. A, 76:022510, Aug 2007. URL: https://link.aps.org/doi/10.1103/PhysRevA.76.022510,doi:10.1103/PhysRevA.76.022510.

$^3P_0$

$^3P_1$

$^3P_2$